Hello Readers:
I have started this blog to show you Embedded C programming for 8051 family microcontroller using KEIL compiler. The KISS philosophy is used to write this tutorial. What is KISS? Keep It Simple, Stupid!
1.3 About Microcontrollers & 8051 Family
How many 8-bit microcontroller families are there?
There are four widely used 8-bit microcontroller chip manufacturers are there: Freescale’s 6811, Intel’s 8051, Zilog’s Z8 and PIC 16x from Microchip Technology. Each have unique instruction set and register set hence they are not compatible to each other.
The Intel 8051, 8-bit microcontroller
Intel's original 8051 family was developed using NMOS technology, but later versions, identified by a letter C in their name (e.g., 80C51) used CMOS technology and were less power-hungry than their NMOS predecessors. This made them more suitable for battery-powered devices. Important features and applications
A particularly useful feature of the 8051 core is the inclusion of a boolean processing engine which allows bit-level boolean logic operations to be carried out directly and efficiently on internal registers and RAM. This feature helped cement the 8051's popularity in industrial control applications. Another valued feature is that it has four separate register sets, which can be used to greatly reduce interrupt latency compared to the more common method of storing interrupt context on a stack.
The Fig 1.3.1 shows internal block diagram of 8051 microcontroller.
The 8051 UARTs make it simple to use the chip as a serial communications interface. External pins can be configured to connect to internal shift registers in a variety of ways, and the internal timers can also be used, allowing serial communications in a number of modes, both synchronous and asynchronous. Some modes allow communications with no external components. A mode compatible with an RS-485 multi-point communications environment is achievable, but the 8051's real strength is fitting in with existing ad-hoc protocols (e.g., when controlling serial-controlled devices).
Once a UART, and a timer if necessary, have been configured, the programmer needs only to write a simple interrupt routine to refill the send shift register whenever the last bit is shifted out by the UART and/or empty the full receive shift register (copy the data somewhere else). The main program then performs serial reads and writes simply by reading and writing 8-bit data to stacks.
8051 based microcontrollers typically include one or two UARTs, two or three timers, 128 or 256 bytes of internal data RAM (16 bytes of which are bit-addressable), up to 128 bytes of I/O, 512 bytes to 64 kB of internal program memory, and sometimes a quantity of extended data RAM (ERAM) located in the external data space. The original 8051 core ran at 12 clock cycles per machine cycle, with most instructions executing in one or two machine cycles. With a 12 MHz clock frequency, the 8051 could thus execute 1 million one-cycle instructions per second or 500,000 two-cycle instructions per second. Enhanced 8051 cores are now commonly used which run at six, four, two, or even one clock per machine cycle, and have clock frequencies of up to 100 MHz, and are thus capable of an even greater number of instructions per second. All SILabs, some Dallas and a few Atmel devices have single cycle cores.
Common features included in modern 8051 based microcontrollers include built-in reset timers with brown-out detection, on-chip oscillators, self-programmable Flash ROM program memory, bootloader code in ROM, EEPROM non-volatile data storage, I²C, SPI, and USB host interfaces, CAN or LIN bus, PWM generators, analog comparators, A/D and D/A converters, RTCs, extra counters and timers, in-circuit debugging facilities, more interrupt sources, and extra power saving modes.
Memory Architecture
The 8051 has four distinct types of memory - internal RAM, special function registers, program memory, and external data memory.
Internal RAM (IRAM) is located from address 0 to address 0xFF. IRAM from 0x00 to 0x7F can be accessed directly, and the bytes from 0x20 to 0x2F are also bit-addressable. IRAM from 0x80 to 0xFF must be accessed indirectly, using the @R0 or @R1 syntax, with the address to access loaded in R0 or R1.
Special function registers (SFR) are located from address 0x80 to 0xFF, and are accessed directly using the same instructions as for the lower half of IRAM. Some of the SFR's are also bit-addressable.
Program memory (PMEM, though less common in usage than IRAM and XRAM) is located starting at address 0. It may be on- or off-chip, depending on the particular model of chip being used. Program memory is read-only, though some variants of the 8051 use on-chip flash memory and provide a method of re-programming the memory in-system or in-application. Aside from storing code, program memory can also store tables of constants that can be accessed by MOVC A, @DPTR, using the 16-bit special function register DPTR.
External data memory (XRAM) also starts at address 0. It can also be on- or off-chip; what makes it "external" is that it must be accessed using the MOVX (Move eXternal) instruction. Many variants of the 8051 include the standard 256 bytes of IRAM plus a few KB of XRAM on the chip. If more XRAM is required by an application, the internal XRAM can be disabled, and all MOVX instructions will fetch from the external bus.
Programming
There are various high-level programming language compilers for the 8051. Several C compilers are available for the 8051, most of which feature extensions that allow the programmer to specify where each variable should be stored in its six types of memory, and provide access to 8051 specific hardware features such as the multiple register banks and bit manipulation instructions. There are many commercial C compilers. SDCC is a popular open source C compiler. Other high level languages such as Forth, BASIC, Pascal/Object Pascal, PL/M and Modula-2 are available for the 8051, but they are less widely used than C and assembly.
Because IRAM, XRAM, and PMEM all have an address 0, C compilers for the 8051 architecture provide compiler-specific pragmas or other extensions to indicate where a particular piece of data should be stored (i.e. constants in PMEM or variables needing fast access in IRAM). Since data could be in one of three memory spaces, a mechanism is usually provided to allow determining to which memory a pointer refers, either by constraining the pointer type to include the memory space, or by storing metadata with the pointer.
Instruction Set
The 8051 instruction set offers several addressing modes, including
- direct register, using ACC (the accumulator) and R0-R7
- direct memory, which access the internal RAM or the SFR's, depending on the address
- indirect memory, using R0, R1, or DPTR to hold the memory address. The instruction used may vary to access internal RAM, external RAM, or program memory.
- individual bits of a range of IRAM and some of the SFR's
Many of the operations allow any addressing mode for the source or the destination, for example, MOV 020h, 03fh will copy the value in memory location 0x3f in the internal RAM to the memory location 0x20, also in internal RAM.
Because the 8051 is an accumulator-based architecture, all arithmetic operations must use the accumulator, e.g. ADD A, 020h will add the value in memory location 0x20 in the internal RAM to the accumulator.
One does not need to master these instructions to program the 8051. With the availability of good quality C compilers, including open source SDCC, virtually all programs can be written with high-level language.
Related Processors
The 8051's predecessor, the 8048, was used in the keyboard of the first IBM PC, where it converted keypresses into the serial data stream which is sent to the main unit of the computer. The 8048 and derivatives are still used today[update] for basic model keyboards.
The 8031 was a cut down version of the original Intel 8051 that did not contain any internal program memory (ROM). To use this chip, external ROM had to be added containing the program that the 8031 would fetch and execute.
The 8052 was an enhanced version of the original 8051 that featured 256 bytes of internal RAM instead of 128 bytes, 8 kiB of ROM instead of 4 kiB, and a third 16-bit timer. The 8032 had these same features except for the internal ROM program memory. The 8052 and 8032 are largely considered to be obsolete because these features and more are included in nearly all modern 8051 based microcontrollers.
Intel discontinued its MCS 51 product line in March 2007, however there are plenty of enhanced 8051 products or silicon IP added regularly from other vendors.
About 8051 Family
In 1981 Intel Corporation introduced 8-bit Microcontroller and referred it as MCS-51.Its CPU works only on 8-bits of data, at a time. Two other members of 8051 family microcontrollers are 8031 and 8051. The Table 1.3.1 shows comparison of 8051 family members.
How many 8051 chip manufacturers are there?
The most widely appreciated 8051 family chip manufacturers are Intel, Atmel, Philips/NXP, Infineon, Dallas/Maxim.
Criteria for choosing a Microcontroller:
- It must meet the task at hand efficiently and cost effectively
8-bit or 16-bit or 32-bit?
Speed Support
Packaging: 40pin DIP [Dual-In line Package] or QFP [Quad Flat Package] as space and assembling of prototyping of the end product is considered.
Power Consumption: as critical for battery-powered products.
Amount of RAM/ROM on chip.
Upgrade facility to high to low power version chip.
Cost per unit.
- How easy it is to develop products around it. Availability of an assembler, debugger, compiler, emulator, technical support [in-house & out house expertise], 3rd party vendor support.
- Its ready availability in need quantities both now and in the future.
<End of 1.3 About Microcontrollers & 8051 Family>
...till next post bye-bye and take care.