Monday, August 13, 2018

C Questions And Answers – 2018C13

There are many commonly asked questions regarding C programming language. Below are some collected such question-answer examples. The questions are usually related with 32-bit system, Turbo C IDE in windows or GCC under Linux environment [not always].

For more such examples, click C_Q&A label.

Predict the output or error(s) for the following:

 

-------------------------------------------------------------------------------------------------

 

main()

{

char i=0;

for(;i>=0;i++) ;

printf("%d\n",i);

}

 

Answer:

                   Behavior is implementation dependent.

 

Explanation:

The detail if the char is signed/unsigned by default is implementation dependent. If the implementation treats the char to be signed by default the program will print –128 and terminate.

On the other hand if it considers char to be unsigned by default, it goes to infinite loop.

 

Rule:

You can write programs that have implementation dependent behavior. But dont write programs that depend on such behavior.

 

-------------------------------------------------------------------------------------------------

 

Is the following statement a declaration/definition. Find what does it mean?

                   int (*x)[10];

 

Answer Definition.

x is a pointer to array of(size 10) integers.

Apply clock-wise rule to find the meaning of this definition.

 

-------------------------------------------------------------------------------------------------

 

What is the output for the program given below

typedef enum errorType{warning, error, exception,}error;

main()

{

error g1;

g1=1;

printf("%d",g1);

}

 

Answer

                   Compiler error: Multiple declaration for error

 

Explanation

The name error is used in the two meanings. One means that it is a enumerator constant with value 1. The another use is that it is a type name (due to typedef) for enum errorType. Given a situation the compiler cannot distinguish the meaning of error to know in what sense the error is used:

error g1;

g1=error;

// which error it refers in each case?

When the compiler can distinguish between usages then it will not issue error (in pure technical terms, names can only be overloaded in different namespaces).

 

Note: the extra comma in the declaration, enum errorType{warning, error, exception,} is not an error. An extra comma is valid and is provided just for programmer’s convenience.

 

-------------------------------------------------------------------------------------------------

 

typedef struct error{int warning, error, exception;}error;

main()

{

error g1;

g1.error =1;

printf("%d",g1.error);

}

 

Answer

                   1

 

Explanation

The three usages of name errors can be distinguishable by the compiler at any instance, so valid (they are in different namespaces).

                   Typedef struct error{int warning, error, exception;}error;

 

This error can be used only by preceding the error by struct kayword as in:

struct error someError;

typedef struct error{int warning, error, exception;}error;

 

This can be used only after . (dot) or -> (arrow) operator preceded by the variable name as in :

g1.error =1;

printf("%d",g1.error);

typedef struct error{int warning, error, exception;}error;

 

This can be used to define variables without using the preceding struct keyword as in:

                   error g1;

Since the compiler can perfectly distinguish between these three usages, it is perfectly legal and valid.

 

Note

This code is given here to just explain the concept behind. In real programming don’t use such overloading of names. It reduces the readability of the code. Possible doesn’t mean that we should use it!

 

-------------------------------------------------------------------------------------------------

 

#ifdef something

int some=0;

#endif

main()

{

int thing = 0;

printf("%d %d\n", some ,thing);

}

 

Answer:

                   Compiler error: undefined symbol some

 

Explanation:

This is a very simple example for conditional compilation. The name something is not already known to the compiler making the declaration

                   int some = 0;

effectively removed from the source code.

 

-------------------------------------------------------------------------------------------------

 

#if something == 0

int some=0;

#endif

main()

{

int thing = 0;

printf("%d %d\n", some ,thing);

}

 

Answer

                   0 0

 

Explanation

This code is to show that preprocessor expressions are not the same as the ordinary expressions. If a name is not known the preprocessor treats it to be equal to zero.

 

-------------------------------------------------------------------------------------------------

 

What is the output for the following program

main()

{

int arr2D[3][3];

printf("%d\n", ((arr2D==* arr2D)&&(* arr2D == arr2D[0])));

}

 

Answer

                   1

 

Explanation

This is due to the close relation between the arrays and pointers. N dimensional arrays are made up of (N-1) dimensional arrays.

arr2D is made up of a 3 single arrays that contains 3 integers each .

The name arr2D refers to the beginning of all the 3 arrays.

*arr2D refers to the start of the first 1D array (of 3 integers) that is the same address as arr2D. So the expression (arr2D == *arr2D) is true (1).

Similarly, *arr2D is nothing but *(arr2D + 0), adding a zero doesn’t change the value/meaning. Again arr2D[0] is the another way of telling *(arr2D + 0). So the expression (*(arr2D + 0) == arr2D[0]) is true (1).

Since both parts of the expression evaluates to true the result is true(1) and the same is printed.

 

-------------------------------------------------------------------------------------------------

 

void main()

{

if(~0 == (unsigned int)-1)

            printf(“You can answer this if you know how values are represented in memory”);

}

 

Answer

                        You can answer this if you know how values are represented in memory

 

Explanation

~ (tilde operator or bit-wise negation operator) operates on 0 to produce all ones to fill the space for an integer. –1 is represented in unsigned value as all 1’s and so both are equal.

 

-------------------------------------------------------------------------------------------------

 

int swap(int *a,int *b)

{

     *a=*a+*b;*b=*a-*b;*a=*a-*b;

}

main()

{

int x=10,y=20;

swap(&x,&y);

 

printf("x= %d y = %d\n",x,y);

}

 

Answer

                   x = 20 y = 10

 

Explanation

This is one way of swapping two values. Simple checking will help understand this.

 

-------------------------------------------------------------------------------------------------

 

…till next post, bye-bye & take care. 

No comments:

Post a Comment